Polar Decompositions in Finite Dimensional Indefinite Scalar Product Spaces: Special Cases and Applications
نویسندگان
چکیده
Polar decompositions X = U A of real and complex matrices X with respect to the scalar product generated by a given indefinite nonsingular matrix Hare studied in the following special cases: (1) X is an H-contraction, (2) X is an H-plus matrix, (3) H has only one positive eigenvalue, and (4) U belongs to the connected component of the identity in the group of H-unitary matrices. Applications to linear optics are presented.
منابع مشابه
On Classification of Normal Operators in Real Spaces with Indefinite Scalar Product
A real finite dimensional space with indefinite scalar product having v − negative squares and v+ positive ones is considered. The paper presents a classification of operators that are normal with respect to this product for the cases min{v − , v+} = 1, 2. The approach to be used here was developed in the papers [1] and [2], where the similar classification was obtained for complex spaces with ...
متن کاملJa n 20 09 Semi - indefinite - inner - product and generalized Minkowski spaces
In this paper we parallelly build up the theories of normed linear spaces and of linear spaces with indefinite metric, called also Minkowski spaces for finite dimensions in the literature. In the first part of this paper we collect the common properties of the semi-and indefinite-inner-products and define the semi-indefinite-inner-product and the corresponding structure, the semi-indefinite-inn...
متن کاملStability of self-adjoint square roots and polar decompositions in inde®nite scalar product spaces
Continuity properties of factors in polar decompositions of matrices with respect to inde®nite scalar products are studied. The matrix having the polar decomposition and the inde®nite scalar product are allowed to vary. Closely related properties of a self-adjoint (with respect to an inde®nite scalar product) perturbed matrix to have a self-adjoint square root, or to have a representation of th...
متن کاملStructured Factorizations in Scalar Product Spaces
Let A belong to an automorphism group, Lie algebra or Jordan algebra of a scalar product. When A is factored, to what extent do the factors inherit structure from A? We answer this question for the principal matrix square root, the matrix sign decomposition, and the polar decomposition. For general A, we give a simple derivation and characterization of a particular generalized polar decompositi...
متن کاملShells of matrices in indefinite inner product spaces
The notion of the shell of a Hilbert space operator, which is a useful generalization (proposed by Wielandt) of the numerical range, is extended to operators in spaces with an indefinite inner product. For the most part, finite dimensional spaces are considered. Geometric properties of shells (convexity, boundedness, being a subset of a line, etc.) are described, as well as shells of operators ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015